A Variable Stepsize Implementation for Stochastic Differential Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Variable Stepsize Implementation for Stochastic Differential Equations

Stochastic differential equations (SDEs) arise from physical systems where the parameters describing the system can only be estimated or are subject to noise. Much work has been done recently on developing higher order Runge–Kutta methods for solving SDEs numerically. Fixed stepsize implementations of numerical methods have limitations when, for example, the SDE being solved is stiff as this fo...

متن کامل

Solving Volterra integro-differential equations by variable stepsize block BS methods: Properties and implementation techniques

In this article, block BS methods are considered for the numerical solution of Volterra integro-differential equations (VIDEs). Convergence and stability properties are analyzed. A new Matlab code for the solution of VIDEs, called VIDEBS, is presented. Numerical results using a variable stepsize implementation show the effectiveness of the proposed code. 2014 Elsevier Inc. All rights reserved.

متن کامل

Stepsize Control for Mean-Square Numerical Methods for Stochastic Differential Equations with Small Noise

Abstract. A strategy for controlling the stepsize in the numerical integration of stochastic differential equations (SDEs) is presented. It is based on estimating the p-th mean of local errors. The strategy leads to stepsize sequences that are identical for all computed paths. For the family of Euler schemes for SDEs with small noise we derive computable estimates for the dominating term of the...

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

strong approximation for itô stochastic differential equations

in this paper, a class of semi-implicit two-stage stochastic runge-kutta methods (srks) of strong global order one, with minimum principal error constants are given. these methods are applied to solve itô stochastic differential equations (sdes) with a wiener process. the efficiency of this method with respect to explicit two-stage itô runge-kutta methods (irks), it method, milstien method, sem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2003

ISSN: 1064-8275,1095-7197

DOI: 10.1137/s1064827500376922